tbp.monty.frameworks.config_utils#
tbp.monty.frameworks.config_utils.cmd_parser#
- create_cmd_parser(all_configs)[source]#
Create monty command line argument parser from all available configs.
- Parameters:
all_configs – Dict containing all available experiment configurations. Usually each project would have its own list of experiment configurations
- Returns:
Command line argument parser
- create_cmd_parser_parallel(all_configs)[source]#
Create monty command line argument parser for running episodes in parallel.
This one is designed to run episodes of an experiment in parallel and is used by run_parallel.py.
- Parameters:
all_configs – Dict containing all available experiment configurations. Usually each project would have its own list of experiment configurations
- Returns:
Command line argument parser
tbp.monty.frameworks.config_utils.config_args#
tbp.monty.frameworks.config_utils.make_dataset_configs#
tbp.monty.frameworks.config_utils.policy_setup_utils#
- class BasePolicyConfig(action_sampler_args: Dict, action_sampler_class: Type[ActionSampler], agent_id: str, file_name: str | None = None, switch_frequency: float = 0.05)[source]#
Bases:
object
Config for BasePolicy.
- action_sampler_class: Type[ActionSampler]#
- class InformedPolicyConfig(action_sampler_args: Dict, action_sampler_class: Type[tbp.monty.frameworks.actions.action_samplers.ActionSampler], agent_id: str, file_name: str | NoneType = None, good_view_percentage: float = 0.5, desired_object_distance: float = 0.03, use_goal_state_driven_actions: bool = False, switch_frequency: float = 1.0, min_perc_on_obj: float = 0.25)[source]#
Bases:
object
- action_sampler_class: Type[ActionSampler]#
- class NaiveScanPolicyConfig(action_sampler_args: Dict, action_sampler_class: Type[tbp.monty.frameworks.actions.action_samplers.ActionSampler], agent_id: str, file_name: str | NoneType = None, good_view_percentage: float = 0.5, desired_object_distance: float = 0.03, use_goal_state_driven_actions: bool = False, switch_frequency: float = 1.0, min_perc_on_obj: float = 0.25, fixed_amount: float = 3.0)[source]#
Bases:
InformedPolicyConfig
- class SurfaceCurveInformedPolicyConfig(action_sampler_args: Dict, action_sampler_class: Type[tbp.monty.frameworks.actions.action_samplers.ActionSampler], agent_id: str, file_name: str | NoneType = None, good_view_percentage: float = 0.5, desired_object_distance: float = 0.025, use_goal_state_driven_actions: bool = False, switch_frequency: float = 1.0, min_perc_on_obj: float = 0.25, alpha: float = 0.1, pc_alpha: float = 0.5, max_pc_bias_steps: int = 32, min_general_steps: int = 8, min_heading_steps: int = 12)[source]#
Bases:
SurfacePolicyConfig
- class SurfacePolicyConfig(action_sampler_args: Dict, action_sampler_class: Type[tbp.monty.frameworks.actions.action_samplers.ActionSampler], agent_id: str, file_name: str | NoneType = None, good_view_percentage: float = 0.5, desired_object_distance: float = 0.025, use_goal_state_driven_actions: bool = False, switch_frequency: float = 1.0, min_perc_on_obj: float = 0.25, alpha: float = 0.1)[source]#
Bases:
InformedPolicyConfig
- generate_action_list(action_space_type) List[Action] [source]#
Generate an action list based on a given action space type.
- Parameters:
action_space_type – name of action space, one of “distant_agent”, “distant_agent_no_translation”, “absolute_only”, or “surface_agent”
- Returns:
Action list to use for the given action space type
- make_base_policy_config(action_space_type: str, action_sampler_class: Type[ActionSampler], agent_id: str = 'agent_id_0')[source]#
Generates a config that will apply for the BasePolicy class.
- Parameters:
action_space_type – name of action space, one of “distant_agent”, “distant_agent_no_translation”, “absolute_only”, or “surface_agent”
action_sampler_class – ActionSampler class to use
agent_id – Agent name. Defaults to “agent_id_0”.
- Returns:
BasePolicyConfig instance
- make_curv_surface_policy_config(desired_object_distance, alpha, pc_alpha, max_pc_bias_steps, min_general_steps, min_heading_steps, use_goal_state_driven_actions=False, action_sampler_class: ~typing.Type[~tbp.monty.frameworks.actions.action_samplers.ActionSampler] = <class 'tbp.monty.frameworks.actions.action_samplers.ConstantSampler'>, action_space_type='surface_agent', file_name=None, agent_id='agent_id_0', **kwargs)[source]#
For the SurfacePolicyCurvatureInformed policy.
- Parameters:
desired_object_distance –
?
alpha –
?
pc_alpha –
?
max_pc_bias_steps –
?
min_general_steps –
?
min_heading_steps –
?
use_goal_state_driven_actions – Defaults to False
action_sampler_class – Defaults to ConstantSampler
action_space_type – Defaults to “surface_agent”
file_name – Defaults to None
agent_id – Agent name. Defaults to “agent_id_0”.
**kwargs –
Any additional keyword arguments. These may include parameters for ActionSampler configuration:
absolute_degrees, max_absolute_degrees, min_absolute_degrees, direction, location, rotation_degrees, rotation_quat, max_rotation_degrees, min_rotation_degrees, translation_distance, max_translation, min_translation,
- Returns:
SurfaceCurveInformedPolicyConfig instance
- make_informed_policy_config(action_space_type: str, action_sampler_class: Type[ActionSampler], good_view_percentage: float = 0.5, use_goal_state_driven_actions: bool = False, file_name: str | None = None, agent_id: str = 'agent_id_0', switch_frequency: float = 1.0, **kwargs)[source]#
Similar to BasePolicyConfigGenerator, but for InformedPolicy class.
- Parameters:
action_space_type – name of action space, one of “distant_agent”, “distant_agent_no_translation”, “absolute_only”, or “surface_agent”
action_sampler_class – ActionSampler class to use
good_view_percentage – Defaults to 0.5
use_goal_state_driven_actions – Defaults to False
file_name – Defaults to None
agent_id – Agent name. Defaults to “agent_id_0”.
switch_frequency – Defaults to 1.0
**kwargs –
Any additional keyword arguments. These may include parameters for ActionSampler configuration:
absolute_degrees, max_absolute_degrees, min_absolute_degrees, direction, location, rotation_degrees, rotation_quat, max_rotation_degrees, min_rotation_degrees, translation_distance, max_translation, min_translation,
- Returns:
InformedPolicyConfig instance
- make_naive_scan_policy_config(step_size: float, agent_id='agent_id_0')[source]#
Simliar to InformedPolicyConfigGenerator, but for NaiveScanPolicyConfig.
Currently less flexible than the other two classes above, because this is currently only used with one set of parameters
- Parameters:
step_size – Fixed amount to move the agent
agent_id – Agent name. Defaults to “agent_id_0”.
- Returns:
NaiveScanPolicyConfig instance
- make_surface_policy_config(desired_object_distance: float, alpha: float, use_goal_state_driven_actions: bool = False, action_sampler_class: ~typing.Type[~tbp.monty.frameworks.actions.action_samplers.ActionSampler] = <class 'tbp.monty.frameworks.actions.action_samplers.ConstantSampler'>, action_space_type: str = 'surface_agent', file_name: str | None = None, agent_id: str = 'agent_id_0', **kwargs)[source]#
Similar to BasePolicyConfigGenerator, but for InformedPolicy class.
- Parameters:
desired_object_distance –
?
alpha –
?
use_goal_state_driven_actions – Defaults to False
action_sampler_class – Defaults to ConstantSampler
action_space_type – Defaults to “surface_agent”
file_name – Defaults to None
agent_id – Agent name. Defaults to “agent_id_0”.
**kwargs –
Any additional keyword arguments. These may include parameters for ActionSampler configuration:
absolute_degrees, max_absolute_degrees, min_absolute_degrees, direction, location, rotation_degrees, rotation_quat, max_rotation_degrees, min_rotation_degrees, translation_distance, max_translation, min_translation,
- Returns:
SurfacePolicyConfig instance